Abstract

The Hénon equation, a generalized form of the Emden equation, admits symmetry-breaking bifurcation for a certain ratio of the transverse velocity to the radial velocity. Therefore, it has asymmetric solutions on a symmetric domain even though the Emden equation has no asymmetric unidirectional solution on such a domain. We discuss a numerical verification method for proving the existence of solutions of the Hénon equation on a bounded domain. By applying the method to a line-segment domain and a square domain, we numerically prove the existence of solutions of the Hénon equation for several parameters representing the ratio of transverse to radial velocity. As a result, we find a set of undiscovered solutions with three peaks on the square domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.