Abstract

تم في هذا البحث تقديم شرح تفصيلي لدوال متعددة حدود بوبكر المتعامدة مع بعض الخواص ذات الاهمية، كذلك استنتاج تعريف متعددات حدود بوبكر الموجية في الفترة (1, 0] وذلك بالاستفادة من بعض الخواص المهمة لمتعددة حدود بوبكر. تمتلك هذه الدوال الاساسية خاصية العيارية المتعامدة بالإضافة الى ضرورة تواجد المنطلق المرصوص. لهذه الدوال الموجية العديد من المزايا وقد استخدمت في المجال النظري بالإضافة الى المجال العملي وتم استخدامها مع متعددات الحدود المتعامدة لغرض طرح طريقة جديدة للتعامل مع العديد من المسائل في العلوم والهندسة ولذلك تعتبر طريقة استخدام الموجبات ذات اهمية كبيرة عند الاستفادة منها في المجالات ذات العلاقة. بالإضافة الى الاستفادة من موجبات بوبكر للحصول على خاصية جديدة وهي مشتقات دالة بوبكر الموجية. استخدمت موجية بوبكر مع طريقة الترصيف للحصول على حل عددي تقريبي لمعادلات لان ايمدن من النوع الخطي المنفرد. تصف معادلات لان ايمدن العديد من الظواهر المهمة في علم الرياضيات والفيزياء السماوي مثل الانفجارات الحرارية الكونية وتكوين النجوم. وتعتبر احدى حالات مسائل القيمة الابتدائية المنفردة للمعادلات التفاضلية اللاخطية من الرتبة الثانية. تقوم هذه الطريقة المقترحة بتحويل معادلة لان ايمدن الى نظام من المعادلات التفاضلية الخطية والتي يمكن حلها بسهولة باستخدام الحاسبة. بناءً على هذا فقد ظهر تطابق الحل العددي مع الحل التحليلي بالرغم من استخدام عدد قليل من متعددات حدود بوبكر الموجية لغرض ايجاد هذا الحل. كذلك، تم في هذا البحث البرهنة على قيمه قيد الخطأ المستخرج من هذه الطريقة. وتضمن هذا البحث على ثلاث امثلة عددية من نوع معادلات لان ايمدن لتوضيح قابلية استخدام الطريقة المقترحة. تم توضيح النتائج الحقيقة مع النتائج التقريبية في شكل جداول ورسوم هندسية لغرض المقارنة.

Highlights

  • Wavelet theory is an emerging area in mathematical research and it has a wide range application in engineering discipline, singular analysis, and time frequency analysis [1,2,3,4,5]

  • In [6], the modified Chebyshev wavelets have been applied for solving this film of non-Newtonian fluid problem while Chebyshev wavelets utilized for fractional differential equations by [7] have been shifted, Chebyshev wavelets have been used for solving problems in mathematics and physics

  • It is well known that there are other types of wavelet functions and all of them have been applied for solving many practical problems arising in numerous branches of science and engineering, that require solving singular initial value problems and boundary value problems of partial differential equations, linear and nonlinear fractional differential equations

Read more

Summary

Introduction

Wavelet theory is an emerging area in mathematical research and it has a wide range application in engineering discipline, singular analysis, and time frequency analysis [1,2,3,4,5]. It permits the accurate representation of different functions and operators. It is well known that there are other types of wavelet functions and all of them have been applied for solving many practical problems arising in numerous branches of science and engineering, that require solving singular initial value problems and boundary value problems of partial differential equations, linear and nonlinear fractional differential equations.

Boubaker Polynomials
Boubaker Wavelet
Bounded of Boubaker Wavelet Coefficients
The Derivative of Boubaker Wavelet in Terms of Boubaker Wavelets
Wavelets Basis
Applying the collocation technique with
Numerical Examples
Maximum error
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.