This paper presents the results of a laboratory test program designed to investigate the adhesive effects of large-scale (bulk) ice on concrete. Medium-strength concrete cylinders were sawn into discs, and attached to a sample table. Freshwater ice samples, frozen using smaller, standard-sized concrete cylinders, were adhered to the concrete with both varying bond times and added weight during bonding. Shear strength tests were conducted at a set displacement rate, under a number of temperatures. The effect of these variables on the adhesive strength of ice to concrete was examined, as well as whether there was any noticeable removal of concrete cement paste or aggregate during testing. The tests indicate that the adhesive strength is negligible when the method of adhesion is “dry” (no liquid layer at the onset of adhesion). Tests with “wet” adhesion indicated a significantly higher strength. The nominal versus the apparent contact area had significant implications for the determination of the adhesive strength of the bond between the ice and the concrete. Removal of cement paste was evident in a number of tests, however the amount was not significant. The results have relevance for design of structures in a marine environment, such as revetement dams or rubblemound breakwaters, as well as for the standardization of adhesion tests with ice and concrete.
Read full abstract