This paper presents an analytical model for ultra scaled symmetric double gate (SDG) nanowire junctionless field effect transistor (JLFET), which includes charge quantization in all the regions of operation. This model is based on a first-order correction for the confined energies obtained by solving the Schrodinger’s equation. The model is able to predict the quantum mechanical effects (QME) on the surface potential, drain current and transconductance for a highly doped and extremely thin silicon layer of thickness down to 4nm. The results obtained are validated by comparing with GENIUS 3D TCAD quantum simulations.
Read full abstract