While receiving less attention in the literature than electromagnetic cloaking, theoretical efforts to define and create acoustic cloaks based upon mimicking coordinate transformations through use of metamaterials is of interest. The present work extends recent analysis of Norris [Proc. R. Soc. London, Ser. A 464, 2411-2434 (2008)] by considering a range of cloaks, from those comprised of fluid layers which are isotropic in bulk moduli with anisotropic density to those having anisotropic bulk moduli and isotropic density. In all but pure inertial varieties, fluid layers comprising the cloaks are pentamode materials governed by a special scalar acoustic equation for pseudopressure derived by Norris. In most cases presented, material properties of the fluid/pentamode layers are based upon target values specified by continuously varying properties resulting from theoretical coordinate transformations geared to minimize scattered pressure limited by realistic goals. The present work analyzes such cloaks for the specific case of plane wave scattering from an acoustically hard sphere. An initial exploration of the parameter space defining such cloaks (for example, material properties of its constituent layers, and operating frequency) is undertaken with a view toward "optimal" design.
Read full abstract