To obtain high-valued aromatic products, it is paramount to cleave the Cα−Cβ bonds in lignin under mild conditions selectively. Nevertheless, this task remains daunting due to the formidable dissociation energies and steric hindrance associated with these bonds. Herein, a facile, efficient and cost-effective strategy for selectively breaking the Cα−Cβ bond in lignin with visible-light irradiation and room temperature is proposed, facilitated by the utilization of the ferric-doped mesoporous graphitic carbon nitride (Fe/mpg-CN) photocatalyst. Collective contributed by the reduced band gap and photoluminescence, combined with intensified visible-light absorption and enhanced photocurrent, the effectiveness in photocatalytic activity of Fe/mpg-CN is offered. Specifically, a high conversion rate (98 %) of the lignin model compound (2-phenoxy-1-phenylethanol), coupled with an excellent selectivity of 98 % in cleaving the Cα−Cβ bonds is achieved by Fe/mpg-CN. Photogenerated holes are indicated as the main active species through comprehensive mechanistic investigations. Additionally, the successful photocatalytic depolymerization of the complex dimer model compound (conversion rate ∼ 96 %) and pine kraft lignin further corroborate the satisfying photocatalytic activity and selectivity of Fe/mpg-CN. This study introduces a promising and viable strategy for the selective breaking of lignin through photocatalysis, offering significant implications for the sustainable production of valuable aromatic compounds.
Read full abstract