When materials are irradiated with high-energy ions, their energies are transferred to electrons and atoms in materials, and the lattice structures of the materials are largely changed to metastable or non-thermal equilibrium states, causing the modification of several physical properties. There are two processes for the material modification by ion irradiation; one is “the irradiation-enhanced process”, and the other is “the irradiation-induced process”. In this review, two kinds of recent results for the microstructural changes and the modifications of mechanical properties will be summarized: one is the hardness modification of dilute aluminum alloys, which is a result of the irradiation-enhanced process, and the other is the hardness modification of Ni-based intermetallic compounds as a result of the irradiation-induced process. The effect of the subsequent thermal treatment on the microstructures and the hardness for ion-irradiated dilute aluminum alloys is quite different from that for Ni-based intermetallic compounds. This result reflects the difference between the irradiation-enhanced process and the irradiation-induced process. Finally, possibilities of the ion irradiation and subsequent thermal treatment to industrial applications will also be discussed.
Read full abstract