Abstract

Atomically disordered oxides are seen as suitable candidate for fast oxygen conduction due to their remarkable enhancement in oxygen diffusivity compared with ordered oxides. In particular, disordered derivatives of pyrochlore-structured oxides (A2B2O7) are seen as an interesting prospect due to the intrinsic existence of oxygen vacancies in their lattice. Using energetic ion irradiation, we demonstrated fabrication of structurally disordered nanoscale channels in A2B2O7 (A = Gd, Yb; B = Ti, Zr) that act as selective pathways for fast oxygen conduction. Atomic-level characterization revealed that the amorphous core and surrounding defect-fluorite phase in the nanochannels exhibited distorted and differently coordinated Ti-O polyhedra, with very similar electronic structure. The formation of defect-fluorite structure is facilitated by a decrease in the difference between the ionic radii of A- and B-site cations in the lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.