MXenes have immense potential in electrochemical energy storage owing to their outstanding physicochemical properties such as their oxygen-containing groups that impart additional pseudocapacitance to acidic electrolytes. However, during electrode assembly, MXene nanosheets undergo restacking because of hydrogen bonding and van der Waals forces, which causes electrolyte ions to traverse long diffusion pathways between the long and narrow nanosheets. Exploiting the oxidative properties of Ti3C2Tx, a hierarchical porous MXene film with micro-, meso- and macroporous structures was successfully prepared using a simple hydrothermal oxidation and etching process to create micro- and mesoporous structures, followed by ice templating to prepare three-dimensional (3D) linked macroporous structures. Because these hierarchical pores have synergistic effects on electrochemical activity and electrolyte ion diffusion, the film attained a specific capacitance of 539F/g at a current density of 2 A/g when it was used as a supercapacitor electrode, which corresponds to one of the highest values reported for MXene-based electrodes. The film retained 83% of its specific capacitance when the current density was increased to 40 A/g, and exhibited excellent cycling stability. By using this multi-porous MXene design, synergistic improvement in ion diffusion was successfully realized and thus a new strategy to prepare high-performance supercapacitor electrode materials was developed.