Abstract

A single-step hydrothermal method was utilized to grow ZnMoS4 (ZMS) nanorods uniformly. Initially, [MoS4]2- and Zn2+ ions interacted to create active nucleation centers, which then led to the formation of primary particles. These particles then underwent spontaneous aggregation and self-assembly on the nickel foam (NF) substrate, which served as a superior 3D interconnecting network template. This aggregation occurred nearly perpendicular to the NF and promoted the uniform growth of ZMS nanorods. The nanorods structure ensures efficient and rapid electrolyte accessibility and ion diffusion, resulting in an increased specific capacitance (Cs) of 2,116 Fg1- (846.4 C g-1) at 1 A g-1 and maintaining about 90% of their capacitance after 10,000 cycles of galvanic charge-discharge (GCD). In a hybrid supercapacitor configuration, ZMS@NF//AC@NF achieved a peak specific power of 7.2 kW.kg-1 and a specific energy of 40.3 Wh.kg-1. Remarkably, it preserved 93% of its initial capacitance after more than 20,000 cycles. These findings affirm the potential of binder-free ZMS nanorods as effective positive electrodes in advanced hybrid supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.