Device fabrication using nanostructured materials, such as nanotubes, requires appropriate metal interconnections between nanotubes and electrical probing pads. Here, electron-beam-assisted deposition (EBAD) and ion-beam-assisted deposition (IBAD) techniques for fabrication of Pt interconnections for single TiO2 nanotube devices are investigated. IBAD conditions were optimized to reduce the leakage current as a result of Pt spreading. The resistivity of the IBAD-Pt was about three orders of magnitude less than that of the EBAD-Pt, due to low carbon concentration and Ga doping, as indicated by X-ray photoelectron spectroscopy analysis. The total resistances of single TiO2 nanotube devices with EBAD- or IBAD-Pt interconnections were 3.82 × 1010 and 4.76 × 108 Ω, respectively. When the resistivity of a single nanotube is low, the high series resistance of EBAD-Pt cannot be ignored. IBAD is a suitable method for nanotechnology applications, such as photocatalysis and biosensors.
Read full abstract