Geothermal systems face adoption challenges due to their high initial investment cost. Accurate cost analyses and a more precise understanding of updated prices could assist geothermal industry projects in obtaining investment financing and better money management with the right equipment. As the cost of geothermal installations can vary widely depending on case and location, it seems essential to clarify the factors and parameters that determine the cost of the system. These include the type of loop system, the ground conditions, the type of heat pump, the system size, and the geographical location. The scope of this study is to compare the operation of various types of ground heat exchangers (GHEs) present in a Ground Source Heat Pump (GSHP) system installed in the coastal area of the Mediterranean climate zone of Cyprus. The highlight of this work is that it presents real installation cost data as well as recorded total energy contributed by the GHEs to the GSHP system of a HP cooling and heating capacities of 101 kW and 117 kW, respectively. The input contribution from the GHEs to the HP is 85,650 kWh (308,340 MJ) in summer and 25,880 kWh (93,168 MJ) in winter. It is shown that, among the three groups of GHEs investigated, the open-well GHE complex has the lowest cost per kWh ratio (0.32 EUR/kWh), followed by the vertical GHE complex (1.05 EUR/kWh), and lastly by the helical coil GHE (2.77 EUR/kWh). This clearly suggests that when underground water is available, the open-well GHE is much more favorable than other GHE types.