Two gravel pit lakes in central Texas were examined over the course of two years with upgradient and downgradient piezometer installations. Groundwater and lake water were sampled bimonthly for nutrients, water levels, and groundwater chemistry, and in addition, rain and lake gauges and mini-piezometers were installed, depth surveys were conducted, and a simple 2D flow model was constructed. The project goal was evaluating and examining flow dynamics and chemical effects as groundwater flows to surface water and back to groundwater with the intent to understand the effects that gravel pit lake systems have on connected shallow groundwater. Both lake systems were shown to be flow-through systems that influence the water quality by decreasing the dissolved nutrients in the groundwater in their vicinity while oxygenating the water and altering the pH. However, the lakes are also prone to high levels of evaporation, meaning that minor improvements to water quality come at the cost of decreasing the quantity of water in storage within the aquifer. Similar groundwater and mine lake systems may show comparable tendencies, providing new information for water managers, regulators, and stake-holders about the potential roles that non-remediated gravel pit lakes may play in local ecosystems and aquifer dynamics.