Abstract
Saline–alkaline soil is a severe threat to Sustainable Development Goals (SDGs), but it can also be a precious land resource if properly utilized according to its properties. This research takes the Songnen Plain as the study area. The aim is to figure out the saline–alkaline status and mechanisms for its scientific utilization. Sentinel-2 multispectral imagery is used, and a 3D spectral space optimization method is proposed according to the restrictive relationships among the surface soil salinity index (SSSI), vegetation index (VI), and surface soil wetness index (SSWI) to construct a surface soil salinization–alkalization index (SSSAI) for estimation of the surface soil salinity (SSS). It is testified that SSS can be precisely estimated using the SSSAI (R2 = 0.74) with field verification of 50 surface salinized soil samples. Surface water and groundwater investigations, as well as deep soil exploration, indicate that the salt ions come from groundwater, and alkalinization is a primary problem in the deep soils. Fine-textured clay soils act as interrupted aquifers to prevent salt ions from penetrating and diluting downward with water, which is the cause of the salinization–alkalization problem in the study area. Finally, a sustainable solution for the saline–alkaline land resource is proposed according to the deep soil properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.