The formulation and planning of integrated fire management strategies must be strengthened by decision support systems about fire-induced ecological impacts and ecosystem recovery processes, particularly in the context of extreme wildfire events that challenge land management initiatives. Wildfire data collection and analysis through remote sensing earth observations is of utmost importance for this purpose. However, the needs of land managers are not always met because the exploitation of the full potential of remote sensing techniques requires a high level of technical expertise. In addition, data acquisition and storage, database management, networking, and computing requirements may present technical difficulties. Here, we present FIREMAP software, which leverages the potential of Google Earth Engine (GEE) cloud-based platform, an intuitive graphical user interface (GUI), and the European Forest Fire Information System (EFFIS) wildfire database for wildfire analyses through remote sensing techniques and data collections. FIREMAP software allows automatic computing of (i) machine learning-based burned area (BA) detection algorithms to facilitate the mapping of (historical) fire perimeters, (ii) fire severity spectral indices, and (iii) post-fire recovery trajectories through the inversion of physically-based radiative transfer models. We introduce (i) the FIREMAP platform architecture and the GUI, (ii) the implementation of well-established algorithms for wildfire science and management in GEE, (iii) the validation of the algorithm implementation in fifteen case-study wildfires across the western Mediterranean Basin, and (iv) the near-future and long-term planned expansion of FIREMAP features.
Read full abstract