Abstract
ABSTRACT Accurate monitoring of the leaf area index (LAI) and aboveground biomass (AGB) using remote sensing at a fine scale is crucial for understanding the spatial heterogeneity of vegetation structure in mountainous ecosystems. Understanding discrepancies in various retrieval strategies considering topographic effects or not is necessary to improve LAI and AGB estimations over mountainous areas. In this study, the performances of the look-up table method (LUT) using radiative transfer model (RTM), machine learning algorithms (MLAs), and hybrid RTM integrating RTM and MLAs based on Landsat surface reflectance (SR) before and after topographic correction were compared and analyzed. The results show that topographic correction improves the accuracies of retrieval methods involving RTM more significantly than the MLAs, meanwhile, it reduces the performance variability of different MLAs. Based on the topographically corrected Landsat SR, the random forest (RF) combined with RTM improves the retrieval accuracy of RTM-based LUT by 7.7% for LAI and 13.8% for AGB, and reduces the simulation error of MLA by 15.1% for LAI and 20.1% for AGB. Compared with available remote sensing products, the hybrid RTM based on Landsat SR with topographic correction has better feasibility to capture LAI and AGB variation at 30 m scale over mountainous areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.