Abstract

Forests play an essential role towards net primary productivity, biological cycles and provide habitat to flora & fauna. To monitor key physiological activities in forest canopies such as photosynthesis, respiration, transpiration, spatially-explicit and precise information of the biochemical (biological) variables such as Leaf Chlorophyll Content (LCC) is required. While lookup-table (LUT)-based Radiative Transfer Model (RTM) inversion against optical remote sensing imagery is regarded as a physically sound and robust approach for retrieving biochemical and biophysical variables, regularization procedures are required to offset the problem of ill-posedness. To optimize the RTM inversion of LCC over a sub-tropical pine forest plantation, in the Western Himalaya, we investigated the role of: (1) cost functions (CFs), (2) added noise, and (3) multiple finest solutions in LUT inversion. Principal CFs were evaluated belonging to three categories: information measures, M-estimates, and minimal contrast approaches. The inversion approaches were applied to a LUT produced by the coupled leaf-canopy model known as PROSAIL RTM and tested in contrast field spectral data obtained from reflectance data derived from UAV (Unmanned Aerial Vehicle) images taken over the canopies of covered pine forests. The Bhattacharyya divergence, an information measure, outperformed all other CFs in LCC inversion, with R2 of 0.94, RMSE of 6.20 μg/cm2 and NRMSE of 12.27% during the validation. The optimized inversion strategy was subsequently applied to a UAV-acquired multispectral image at an 8.2 cm pixel resolution for detailed landscape forest LCC mapping. The associated residuals as provided by the LUT-based inversion provided insights in the spatial consistency of the LCC map.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call