Abstract

High-intensity and large-scale mining activities have aggravated regional eco-geological risk. Therefore, it is significantly essential to conduct an assessment of the eco-geological risk of mining areas. Although some progress has been achieved in ecological risk assessment studies, existing approaches are not entirely suitable for coal bases with high landscape fragmentation and dense coal mining activities. Here, we developed a novel landscape ecological and geological risk (LEGR) assessment framework based on theories that include landscape ecological risk and eco-geological risk. The framework selected 10 indicators, including slope, fluctuation, lithological hardness, soil type, FVC, RSEI, precipitation, biological abundance, distance to road and subsidence rate, and calculated the weights of indicators by introducing the AHP-CRITIC coupled weighting model. Then, the impact of landscape disturbances on eco-geological risk is quantified by measuring landscape losses. This framework was applied to the Shenfu mining area (SFMA), a typical coal base in northwest China. The results indicated the LEGR was moderate in the SFMA whose spatial distribution exhibited an increasing trend from southwest to northeast. Besides, the high LEGR was mainly in the aggregated mining area with high subsidence. For the eco-geological environment monitoring at the mine scale, a multiscale geographically weighted regression (MGWR) model was utilized for analyzing the relationship between indicators and LEGR within the disturbed range of coal mining. It provided valuable insights for the formulation of environmental protection policies in the mining area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call