Clostridium perfringens is an important opportunistic pathogen that may result in toxin-mediated diseases involving food poisoning/tissue gangrene in humans and various enterotoxaemia in animal species. It is a main etiological agent for necrotic enteritis (NE), the most financially devastating bacterial disease in broiler chickens, especially if raised under antibiotic-free conditions. Importantly, NE is responsible for losses of six billion US dollars annually in the global poultry industry. To investigate the molecular mechanisms of C. perfringens-induced pathogenesis in the gut and its microbiome mRNA levels in C. perfringens-infected and non-infected hosts, we used RNA sequencing technology to perform transcriptional analysis of both host intestine and microbiome using our NE model. The growth rate was significantly impaired in chickens infected by C. perfringens. In total, 13,473 annotated chicken genes were differentially expressed between these two groups, with ninety-six genes showing statistical significance (|absolute fold changes| > 2.0, adjusted p value < 0.05). Genes involved in energy production, MHC Class I antigen, translation, ribosomal structures, and amino acid, nucleotide and carbohydrate metabolism from infected gut tissues were significantly down-regulated. The upregulated genes were mainly engaged in innate and adaptive immunity, cellular processes, genetic information processing, and organismal systems. Additionally, the transcriptional levels of four crucial foodborne pathogens were significantly elevated in a synergic relationship with pathogenic C. perfringens infection. This study presents the profiling data that would likely be a relevant reference for NE pathogenesis and may provide new insights into the mechanism of host-pathogen interaction in C. perfringens-induced NE infection in broiler chickens.