This paper presents a generalization of forward start options under jump diffusion framework of Duffie et al. [Duffie, D, J Pan and K Singleton (2000). Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68, 1343–1376.]. We assume, in addition, the short-term rate is governed by the CIR dynamics introduced in Cox et al. [Cox, JC, JE Ingersoll and SA Ross (1985). A theory of term structure of interest rates, Econometrica 53, 385–408.]. The instantaneous volatilities are correlated with the dynamics of the stock price process, whereas the short-term rate is assumed to be independent of the dynamics of the price process and its volatility. The main result furnishes a semi-analytical formula for the price of the Forward Start European call option. It is derived using probabilistic approach combined with the Fourier inversion technique, as developed in Ahlip and Rutkowski [Ahlip, R and M Rutkowski (2014). Forward start foreign exchange options under Heston’s volatility and CIR interest rates, Inspired By Finance Springer, pp. 1–27], Carr and Madan [Carr, P and D Madan (1999). Option valuation using the fast Fourier transform, Journal of Computational Finance 2, 61–73, Carr, P and D Madan (2009). Saddle point methods for option pricing, Journal of Computational Finance 13, 49–61] as well as Levendorskiĩ [Levendorskiĩ, S (2012). Efficient pricing and reliable calibration in the Heston model, International Journal of Applied Finance 15, 1250050].
Read full abstract