Background: Previous studies have shown that AF screening in at-risk populations can reduce stroke incidence. However, non-targeted screening approaches often result in high false positive rates, placing an unnecessary burden on the healthcare system. In contrast, artificial intelligence-guided screening has been demonstrated to increase diagnostic yield in large prospective clinical trials. This approach, however, requires recording an ECG and a large-scale dataset for model training. Heart rate variability (HRV) analysis has proven effective in deciphering key heart dynamics. By analyzing HRV as interrelated dynamic systems, it may be possible to facilitate targeted AF screening using wearable devices that measure heart rate. The Koopman operator, used for data-driven modeling of interrelated dynamic systems, has been shown to accurately predict complex phenomena in chaotic systems such as climate forecasting and drug adverse reaction prediction. This is achieved by utilizing common characteristics of the systems for most model parameters, with only a small fraction of the parameters being specific to a certain system. Methods: Long (>10 hour) records from 361 individuals (AFDB, LTAFDB) and healthy individuals' datasets from PhysioNet and THEW were analyzed for inter-beat intervals. The unified dataset was then split into 94 training, 17 validation, and 250 test set patients. Recordings from the training set were used to train both the common and specific parts of the interrelated dynamic systems model for each patient, along with a shared small neural network classifying patients into low and high risk for AF based on the unique (not shared between patients) singular values of the dynamic system model. Patient-specific dynamic system models were then fitted for the validation and test sets to calculate the patient dynamic singular values, which were used to classify patients into low and high risk for AF groups. Results: Atrial fibrillation occurred in 48 of 202 (23%) patients classified as low risk and 35 of 48 (72.9%) patients classified as high risk (odds ratio 8.63, 95% CI 4.23-17.64), yielding 72.9% sensitivity with 76.2% specificity. Conclusion: In this retrospective analysis, classification of the dynamic system model singular values identified patients at high risk for atrial fibrillation from sinus rhythm period.
Read full abstract