Burn wound depth is a significant determinant of patient treatment. Typically, the evaluation of burn depth relies heavily on the clinical experience of doctors. Even experienced surgeons may not achieve high accuracy and speed in diagnosing burn depth. Thus, intelligent burn depth classification is useful and valuable. Here, an intelligent classification method for burn depth based on machine learning techniques is proposed. In particular, this method involves extracting color, texture, and depth features from images, and sequentially cascading these features. Then, an iterative selection method based on random forest feature importance measure is applied. The selected features are input into the random forest classifier to evaluate this proposed method using the standard burn dataset. This method classifies burn images, achieving an accuracy of 91.76% when classified into two categories and 80.74% when classified into three categories. The comprehensive experimental results indicate that this proposed method is capable of learning effective features from limited data samples and identifying burn depth effectively.