Abstract

To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.