Abstract
To increase the adaptability of bridge construction equipment in high-altitude settings, this study examines a magnetorheological (MR) damper designed for cable-stayed climbing robots. Initially, a novel damper incorporating a spring-MR fluid combination and three magnetic circuit units is developed. A robot-cable-wind coupling dynamic model is subsequently formulated via Hamilton’s principle, based on force analysis. The simulation results indicate that the damper’s maximum output force is 204.60 N, with optimal working currents of 0.2 A (Force 4) and 0.4 A (Force 7). To verify the analysis, testing is conducted using an MR damper. The results reveal an average relative error of 4.60% for the actual output damping force. When mounted on the robot, the climbing speed range, average relative error, and maximum relative error are controlled within 0.66 mm/s, 0.78% and 2.5%, respectively. This approach allows for the rapid selection of suitable working currents and markedly enhances the climbing stability of the robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.