Abstract
Efficient sorting and recycling of decoration waste are crucial for the industry's transformation, upgrading, and high-quality development. However, decoration waste can contain toxic materials and has greatly varying compositions. The traditional method of manual sorting for decoration waste is inefficient and poses health risks to sorting workers. It is therefore imperative to develop an accurate and efficient intelligent classification method to address these issues. To meet the demand for intelligent identification and classification of decoration waste, this paper applied the deep learning method You Only Look Once X (YOLOX) to the task and proposed an identification and classification framework of decoration waste (YOLOX-DW framework). The proposed framework was validated and compared using a multi-label image dataset of decoration waste, and a robot automatic sorting system was constructed for practical sorting experiments. The research results show that the proposed framework achieved a mean average precision (mAP) of 99.16 % for different components of decoration waste, with a detection speed of 39.23 FPS. Its classification efficiency on the robot sorting experimental platform reached 95.06 %, indicating a high potential for application and promotion. This provides a strategy for the intelligent detection, identification, and classification of decoration waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.