The traditional SIFT (Scale Invariant Feature Transform) registration algorithm is highly regarded in the field of image processing due to its scale invariance, rotation invariance, and robustness to noise. However, it faces challenges such as a large number of feature points, high computational demand, and poor real-time performance when dealing with large-scale images. A novel optimization method based on integral image technology and canny edge detection is presented in this paper, aiming to maintain the core advantages of the SIFT algorithm while reducing the complexity involved in image registration computations, enhancing the efficiency of the algorithm for real-time image processing, and better adaption to the needs of large-scale image handling. Firstly, Gaussian separation techniques were used to simplify Gaussian filtering, followed by the application of integral image techniques to accelerate the construction of the entire pyramid. Additionally, during the feature point detection phase, an innovative feature point filtering strategy was introduced by combining Canny edge detection with dilation operations alongside the traditional SIFT approach, aiming to reduce the number of feature points and thereby lessen the computational load. The method proposed in this paper takes 0.0134 s for Image type a, 0.0504 s for Image type b, and 0.0212 s for Image type c. In contrast, the traditional method takes 0.1452 s for Image type a, 0.5276 s for Image type b, and 0.2717 s for Image type c, resulting in reductions of 0.1318 s, 0.4772 s, and 0.2505 s, respectively. A series of comparative experiments showed that the time taken to construct the Gaussian pyramid using our proposed method was consistently lower than that required by the traditional method, indicating greater efficiency and stability regardless of image size or type.
Read full abstract