A digitally-controlled fully integrated voltage regulator (IVR) enables wide autonomous DVFS in a 22 nm graphics execution core. Part of the original power header is converted into a hybrid power stage to support digital low-dropout (DLDO), and switched-capacitor voltage regulator (SCVR) modes, in addition to the original bypass and sleep modes. Using voltage sensing, tunable replica circuit, or a core warning signal, the IVR detects and quickly responds to fast voltage droops to support fast dynamic workload changes without performance degradation. In a prototype, a 3D graphics execution core is powered up by the proposed hybrid IVR demonstrating measured 26% and 82% reduction in core energy in the turbo and the near-threshold voltage (NTV) modes, respectively. The total area overhead of the proposed hybrid IVR is 4% of the core compared to 2% from the original power header. Our digitally assisted control for the droop response shows ${\sim}$ 75% core frequency improvement at 0.84 V.
Read full abstract