We introduce CircuitQ, an open-source toolbox for the analysis of superconducting circuits implemented in Python. It features the automated construction of a symbolic Hamiltonian of the input circuit and a dynamic numerical representation of the Hamiltonian with a variable basis choice. The software implementation is capable of choosing the basis in a fully automated fashion based on the potential energy landscape. Additional features include the estimation of the T 1 lifetimes of the circuit states under various noise mechanisms. We review previously established circuit quantization methods and formulate them in a way that facilitates the software implementation. The toolbox is then showcased by applying it to practically relevant qubit circuits and comparing it to specialized circuit solvers. Our circuit quantization is applicable to circuit inputs from a large design space, and the software is open-sourced. We thereby add an important resource for the design of new quantum circuits for quantum information processing applications.
Read full abstract