Abstract
The programmability of nucleic acids allows detection devices with complex behaviors to be designed de novo. While highly specific, these high-order circuits are usually sequence constrained, making their adaptability toward biological targets challenging. Here, we devise a new strategy called indirect associative strand displacement to decouple sequence constraints between miRNA inputs and de novo strand displacement circuits. By splitting circuit inputs into their toehold and branch migration regions and controlling their association through a docking strand, we demonstrate how any miRNA sequence can be interfaced with synthetic DNA circuits, including catalytic hairpin assembly and a four-input classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.