Background/Objectives: Gastric cancer (GC) is the leading cause of cancer-related deaths worldwide. C118P, a microtubule inhibitor with anti-angiogenic and vascular-disrupting activities, was proven to be cytotoxic to various cancer cell lines. This study aimed to explore the anti-tumor effect of C118P against gastric cancer and identify its potential target. Methods: The MTT assay, colony formation assay, and EdU incorporation assay were used to evaluate the effect of C118P on GC cell proliferation. Cell cycle and cell apoptosis were measured using flow cytometry. Molecular docking, a microscale thermophoresis (MST) analysis, and the cellular thermal shift assay (CETSA) were used to investigate the binding of C118P to RAB1A. Autophagy-related effects were evaluated by using the MDC staining assay, immunofluorescence assay, and immunoblotting assay. The SGC-7901 cell line xenograft mouse model was used to confirm the anti-tumor efficacy of C118P. Results: C118P dramatically inhibited proliferation, induced G2/M cell cycle arrest, and triggered apoptosis in GC cell lines HGC-27 and SGC-7901. Mechanistically, C118P was demonstrated to bind with RAB1A and reduce the RAB1A protein level, accompanied by the inhibition of mTORC1 signaling. Moreover, C118P induced autophagosome formation and promoted RAB1A protein degradation in an autophagy-lysosomal-dependent manner. The in vivo study verified that C118P inhibits GC growth by inhibiting the RAB1A-mTOR axis. Conclusions: Our findings suggested that C118P inhibits GC growth by promoting the autophagy-lysosomal-dependent degradation of RAB1A and modulating mTOR C1 signaling. C118P shows potential as being a small molecule drug effective in the treatment of gastric cancer via targeting RAB1A.
Read full abstract