Abstract

Background and aimsChemokine (CC motif) receptor 1 (CCR1) promotes liver fibrosis in mice. However, its effects on nonalcoholic steatohepatitis (NASH) remain unclear. Therefore, the present study aimed to investigate the role of CCR1 in the progression of NASH. MethodsHuman serum and liver tissues were obtained from patients with NASH and controls. Systemic (Ccr1−/−) and liver macrophage-knockout Ccr1 (Ccr1LKD) mice were fed a high-cholesterol and high-fat (CL) diet for 12 weeks or a methionine/choline-deficient (MCD) diet for 4 weeks. BX471 was used to pharmacologically inhibit CCR1 in CL-fed mice. ResultsCCR1 was significantly upregulated in liver samples from patients with NASH and in animal models of dietary-induced NASH. In the livers of mice fed a CL diet for 12 weeks, the CCR1 protein colocalized with F4/80+ macrophages rather than with hepatic stellate cells. Compared to their wild-type littermates, Ccr1−/− mice fed with the CL or MCD diet showed inhibition of NASH-associated hepatic steatosis, inflammation, and fibrosis. Mechanistically, Ccr1 deficiency suppressed macrophage infiltration and activation by attenuating the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Similar results were observed in Ccr1LKD mice administered the CL diet. Moreover, CCR1 inhibition by BX471 effectively suppressed NASH progression in CL-fed mice. ConclusionsCcr1 deficiency mitigated macrophage activity by inhibiting mTORC1 signaling, thereby preventing the development of NASH. Notably, the CCR1 inhibitor BX471 protected against NASH. These findings would help in developing novel strategies for the treatment of NASH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call