Friction stir forming (FSF) is a solid-state, eco-friendly spot welding technique primarily applied for lap joining dissimilar sheet metals. The details related to the process are scarce in literature. The present work explores the potential of the FSF process for joining dissimilar grade alloys of same metal, namely aluminum. The effect of tool rotational speed on the joint formation and mechanical performance of FSF joints between AA5052-H32 and AA 6061-T6 sheets is studied through systematic experimentation and macrostructure analysis. Hardness distribution across the joint, joint morphology, and failure modes at varying rotational speeds are also presented. The tool rotational speed shows significant effect on the mechanical performance results, zones formed within the joint, and hardness distribution across the joint. Maximum lap shear strength, about 6 kN, obtained in the present work is superior than that of joints fabricated on same material combination with other friction-based joining technologies. The lower and medium tool rotational speeds, between 500 and 1500 rpm, are the best choices for fabricating FSF joints for the materials used. Macrostructure analysis revealed that at lower tool rotational speed ( 1500 rpm), localized stir zones are distributed over the cross-section. Friction stir form samples showed an inverted “W”-shaped hardness profile over the cross-section, and the joint morphological features are independent of the tool rotational speed. Failure modes such as partial bond delamination, tear-off, and pull-out occur randomly and have no systematic correlation with the tool rotational speed.
Read full abstract