Abstract Si-doped zinc oxide (SZO, Si 3%) thin films were deposited on glass substrates by means of direct current magnetron sputtering under different pressures. The influence of sputtering pressure on structure, morphology, optical and electrical properties of SZO thin films was investigated. The results reveal that the sputtering pressures have a significant impact on the growth rate, crystal quality and electrical properties of the films, but have little impact on the optical properties of the films. SZO thin film samples grown on glasses are polycrystalline with a hexagonal wurtzite structure and have a preferred orientation along the c-axis perpendicular to the substrate. When the sputtering pressure increases from 2 to 8 Pa, the film surface becomes compact and smooth, the degree of crystallization of the films increases, and the resistivity of films decreases. However, when the sputtering pressure continues to increase from 8 to 10 Pa, the degree of crystallization of the films decreases, the grain size decreases, and the resistivity of the films increases. SZO(3%) thin film deposited at a sputtering pressure of 8 Pa shows the largest carrier concentration, the largest mobility, the lowest resistivity of 3.0 × 10−4 Ω cm and a high overall transmission of 93.3% in the visible range.
Read full abstract