Abstract

Reflective mirror coatings made of iridium are used in X-ray telescopes of the Chandra X-ray Observatory (CXO) launched in 1999 by the National Aeronautics and Space Administration (NASA) to investigate astronomical sources at photon energies below 10keV. These coatings were produced in a DC magnetron sputtering process and have so far proven their suitability for space-based applications. We are considering in the present paper the processing of thin iridium films for lightweight telescopes using the radio frequency magnetron sputtering technique with an oblique angle deposition. The coating development presented here is focused on the influence of total sputtering pressure on film properties as well as on its impact on the mirror's performance. Characterisation methods such as X-ray diffractometry, X-ray reflectometry, atomic force microscopy and transmission electron microscopy have been used. Correlations between morphology, density, surface micro-roughness, crystal structure of the iridium layer and the expected reflectivity of the X-ray mirror are described and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.