Solar-blind photodetectors (SBPDs) are core essential components for many critical applications such as precision guidance, fire warning, and space communications. Ultra-wide bandgap semiconductor β-Ga2O3 is considered to be an ideal material for the fabrication of SBPDs. However, synthetizing β-Ga2O3 with high quality factor while simultaneously in situ modulation of electronic and optoelectronic properties to enhance performance has been challenging. Here, pulsed laser deposition (PLD) technology is used to synthesize high-quality β-Ga2O3 thin films on a sapphire substrate. The oxygen vacancy engineered β-Ga2O3 films can achieve in situ precise control of their surface morphology, optical parameters, and optoelectronic properties by simply adjusting the oxygen pressure. Meanwhile, the optimal thickness of the β-Ga2O3 film for the developing high-performance SBPD is ∼221 nm, determined by fitting and analyzing the optical parameters measured by the ellipsometry. Subsequently, the influence of oxygen pressure on the performance of β-Ga2O3 SBPD is thoroughly explored, considering the optimization of electrode size and deposition time. When the oxygen pressure is set to 15 Pa, the β-Ga2O3-based SBPD achieves highly competitive responsivity (R) and detectivity (D*) at 250 nm, with values of 1080 A·W−1 and 1.4 × 1016 cm·W−1·Hz1/2, respectively. Additionally, the noise component of the β-Ga2O3 SBPD is further studied to calibrated the traditional device performance results. This work introduces a simple and straightforward approach to in situ tuning of the optoelectronic properties of β-Ga2O3, which is important for advancing β-Ga2O3 film growth technology and fabricating high-performance photodetectors.
Read full abstract