The effects of an included temperature field in the contact process between a piezoelectric body and a rigid foundation with thermal and electrical conductivity are discussed. The constitutive relation of the material is assumed to be thermo-electro-elastic and involves the nonlinear elastic constitutive Hencky’s law. The frictional contact is modeled with Signorini’s conditions, the regularized Coulomb law, and the regularized electrical and thermal conductivity conditions. The resulting thermo-electromechanical model includes the temperature field as an additional state variable to take into account thermal effects alongside with those of the piezoelectric. The existence of the unique weak solution to the problem is established by using Schauder’s fixed point theorem combined with arguments from the theory of variational inequalities involving nonlinear strongly monotone Lipschitz continuous operators. A successive iteration technique to solve the problem numerically is proposed, and its convergence is established. A variant of the Augmented Lagrangian, the so-called Alternating Direction Method of multipliers (ADMM), is used to decompose the original problem into two sub-problems, solve them sequentially and update the dual variables at each iteration. The influence of the thermal boundary condition on the behavior of contact forces and electrical potential is shown through graphical illustrations.
Read full abstract