Abstract

We consider the interplay between latency constrained applications and function-level resource management in a serverless edge computing environment. We develop a game theoretic model of the interaction between rate adaptive applications and a load balancing operator under a function-oriented pay-as-you-go pricing model. We show that under perfect information, the strategic interaction between the applications can be formulated as a generalized Nash equilibrium problem, and use variational inequality theory to prove that the game admits an equilibrium. For the case of imperfect information, we propose an online learning algorithm for applications to maximize their utility through rate adaptation and resource reservation. We show that the proposed algorithm can converge to equilibria and achieves zero regret asymptotically, and our simulation results show that the algorithm achieves good system performance at equilibrium, ensures fast convergence, and enables applications to meet their latency constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.