Abstract
The term convexity associated with the theory of inequality in the sense of fractional analysis has a broad range of different and remarkable applications in the domain of applied sciences. The prime objective of this article is to investigate some new variants of Hermite–Hadamard and Pachpatte-type integral inequalities involving the idea of the preinvex function in the frame of a fractional integral operator, namely the Caputo–Fabrizio fractional operator. By employing our approach, a new fractional integral identity that correlates with preinvex functions for first-order differentiable mappings is presented. Moreover, we derive some refinements of the Hermite–Hadamard-type inequality for mappings, whose first-order derivatives are generalized preinvex functions in the Caputo–Fabrizio fractional sense. From an application viewpoint, to represent the usability of the concerning results, we presented several inequalities by using special means of real numbers. Integral inequalities in association with convexity in the frame of fractional calculus have a strong relationship with symmetry. Our investigation provides a better image of convex analysis in the frame of fractional calculus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.