Ultra-wideband (UWB) has broad application prospects in the field of indoor localization. In order to make up for the shortcomings of ultra-wideband that is easily affected by the environment, a positioning method based on the fusion of infrared vision and ultra-wideband is proposed. Infrared vision assists locating by identifying artificial landmarks attached to the ceiling. UWB uses an adaptive weight positioning algorithm to improve the positioning accuracy of the edge of the UWB positioning coverage area. Extended Kalman filter (EKF) is used to fuse the real-time location information of the two. Finally, the intelligent mobile vehicle-mounted platform is used to collect infrared images and UWB ranging information in the indoor environment to verify the fusion method. Experimental results show that the fusion positioning method is better than any positioning method, has the advantages of low cost, real-time performance, and robustness, and can achieve centimeter-level positioning accuracy.
Read full abstract