Abstract

High-accuracy indoor positioning is a prerequisite to satisfy the increasing demands of position-based services in complex indoor scenes. Current indoor visual-positioning methods mainly include image retrieval-based methods, visual landmarks-based methods, and learning-based methods. To better overcome the limitations of traditional methods such as them being labor-intensive, of poor accuracy, and time-consuming, this paper proposes a novel indoor-positioning method with automated red, green, blue and depth (RGB-D) image database construction. First, strategies for automated database construction are developed to reduce the workload of manually selecting database images and ensure the requirements of high-accuracy indoor positioning. The database is automatically constructed according to the rules, which is more objective and improves the efficiency of the image-retrieval process. Second, by combining the automated database construction module, convolutional neural network (CNN)-based image-retrieval module, and strict geometric relations-based pose estimation module, we obtain a high-accuracy indoor-positioning system. Furthermore, in order to verify the proposed method, we conducted extensive experiments on the public indoor environment dataset. The detailed experimental results demonstrated the effectiveness and efficiency of our indoor-positioning method.

Highlights

  • Nowadays, position information has become key information in people’s daily lives

  • The proposed indoor-positioning method consists of three major components: (1) RGB-D indoor-positioning database construction; (2) image retrieval based on the convolutional neural network (CNN) feature vector; (3) position and attitude estimation

  • We have conducted a series of experiments to evaluate the effectiveness of the proposed indoor positioning method

Read more

Summary

Introduction

Position information has become key information in people’s daily lives. This has inspired position-based services, which aim to provide personalized services to mobile users whose positions are changing [1]. Positioning people accurately in indoor scenes remains a challenge and it has stimulated a large number of indoor-positioning methods in recent years [3]. Among these methods, fingerprint-based algorithms are widely used. Their fingerprint databases include Wi-Fi [4,5,6,7,8], Bluetooth [9,10], and magnetic field strengths [11,12]. It is difficult for their results to meet the needs of high-accuracy indoor positioning

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.