The orthogonal polynomials with recurrence relation (λ,n +μn-z)Fn(z) = μn+1Fn+1(z)+λn-1Fn-1(z) with two kinds of cubic transition rates λn and μn, corresponding to indeterminate Stieltjes moment problems, are analyzed. We derive generating functions for these two classes of polynomials, which enable us to compute their Nevanlinna matrices. We discuss the asymptotics of the Nevanlinna matrices in the complex plane.
Read full abstract