Abstract

The classical Kramer sampling theorem is, in the subject of self‐adjoint boundary value problems, one of the richest sources to obtain sampling expansions. It has become very fruitful in connection with discrete Sturm‐Liouville problems. In this paper a discrete version of the analytic Kramer sampling theorem is proved. Orthogonal polynomials arising from indeterminate Hamburger moment problems as well as polynomials of the second kind associated with them provide examples of Kramer analytic kernels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.