Abstract

In the field of orthogonal polynomials theory, the classical Markov theorem shows that for determinate moment problems the spectral measure is under control of the polynomials asymptotics. The situation is completely different for indeterminate moment problems, in which case the interesting spectral measures are to be constructed using Nevanlinna parametrization. Nevertheless it is interesting to observe that some spectral measures can still be obtained from weaker forms of the Markov theorem. The exposition will be illustrated by orthogonal polynomials related to elliptic functions: in the determinate case by examples due to Stieltjes and some of their generalizations and in the indeterminate case by more recent examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.