This paper is concerned with the incompressible Euler equations. In Onsager’s critical classes we provide explicit formulas for the Duchon–Robert measure in terms of the regularization kernel and a family of vector-valued measures {μz}z⊂Mx,t\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{\\mu _z\\}_z\\subset {\\mathcal {M}}_{x,t}$$\\end{document}, having some Hölder regularity with respect to the direction z∈B1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z\\in B_1$$\\end{document}. Then, we prove energy conservation for Lx,t∞∩Lt1BVx\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^\\infty _{x,t}\\cap L^1_t BV_x$$\\end{document} solutions, in both the absence or presence of a physical boundary. This result generalises the previously known case of Vortex Sheets, showing that energy conservation follows from the structure of L∞∩BV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^\\infty \\cap BV$$\\end{document} incompressible vector fields rather than the flow having “organized singularities”. The interior energy conservation features the use of Ambrosio’s anisotropic optimization of the convolution kernel and it differs from the usual energy conservation arguments by heavily relying on the incompressibility of the vector field. This is the first energy conservation proof, for a given class of solutions, which fails to simultaneously apply to both compressible and incompressible models, coherently with compressible shocks having non-trivial entropy production. To run the boundary analysis we introduce a notion of “normal Lebesgue trace” for general vector fields, very reminiscent of the one for BV functions. We show that having such a null normal trace is basically equivalent to have vanishing boundary energy flux. This goes beyond the previous approaches, laying down a setup which applies to every Lipschitz bounded domain. Allowing any Lipschitz boundary introduces several technicalities to the proof, with a quite geometrical/measure-theoretical flavour.