Abstract

Given bounded vector field \({b : {\mathbb{R}^{d}} \to {\mathbb{R}^{d}}}\), scalar field \({u : {\mathbb{R}^{d}} \to {\mathbb{R}}}\), and a smooth function \({\beta : {\mathbb{R}} \to {\mathbb{R}}}\), we study the characterization of the distribution \({{\rm div}(\beta(u)b)}\) in terms of div b and div(ub). In the case of BV vector fields b (and under some further assumptions), such characterization was obtained by L. Ambrosio, C. De Lellis and J. Malý, up to an error term which is a measure concentrated on the so-called tangential set of b. We answer some questions posed in their paper concerning the properties of this term. In particular, we construct a nearly incompressible BV vector field b and a bounded function u for which this term is nonzero. For steady nearly incompressible vector fields b (and under some further assumptions), in the case when d = 2, we provide complete characterization of div(\({\beta(u)b}\)) in terms of div b and div(ub). Our approach relies on the structure of level sets of Lipschitz functions on \({{\mathbb{R}^{2}}}\) obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique, we obtain new sufficient conditions when any bounded weak solution u of \({\partial_t u + b \cdot \nabla u=0}\) is renormalized, that is when it also solves \({\partial_t \beta(u) + b \cdot \nabla \beta(u)=0}\) for any smooth function \({\beta \colon{\mathbb{R}} \to {\mathbb{R}}}\). As a consequence, we obtain new a uniqueness result for this equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call