Abstract
We study the Kuramoto-Sivashinsky equation (KSE) in scalar form on the two-dimensional torus with and without advection by an incompressible vector field. We prove local existence of mild solutions for arbitrary data in L 2. We then study the issue of global existence. We prove global existence for the KSE in the presence of advection for arbitrary data, provided the advecting velocity field v satisfies certain conditions that ensure the dissipation time of the associated hyperdiffusion-advection equation is sufficiently small. In the absence of advection, global existence can be shown only if the linearized operator does not admit any growing mode and for sufficiently small initial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Communications in Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.