Bubonic plague, transmitted by infected flea bites, is the most common form of plague and, left untreated, can progress to the pneumonic form, which is highly contagious. Surveillance focusing on reservoir and vector is considered to be the main approach to prevent plague. Common rodent control methods include the use of rodenticide and snap traps but, in a plague context, the dispersal of fleas from killed animals may pose a serious health threat. Therefore, there is a need for strategies which address reservoir and vector control. The aim of this study was to assess the effects of combination of reservoir and vector control through community-based surveillance. Activities were implemented by local previously trained community agents in two active plague foci in Madagascar. Kartman bait stations containing rodenticide and insecticide were placed indoors while live traps were set outdoors. Small mammals were identified and killed with their fleas. Effectiveness of control measures was evaluated by comparison of plague incidence two years before and after intervention using data on reported human cases of plague from the Central Laboratory of Plague. A total of 4,302 small mammals were captured, with the predominance of the black rat Rattus rattus. Our results found a reduction in plague incidence in the treated site for at least two years after treatment. Community-based interventions played an important role in reducing contact between humans-rodents-fleas. Our study confirms the importance of animal surveillance during the low plague transmission season. The combination of reservoir and vector control with community involvement may be effective at reducing the risks of plague spillover to humans. The strategy of using Kartman bait stations indoors with live traps outdoors can be used to refine proactive plague prevention, however, due to the potential development of resistance to pesticides in flea and rat populations, overuse should be considered.