The physico- and electrochemical behaviors of a series of [WZn3(H2O)2(ZnW9O34)2]12- (Zn-WZn3) and its first-row transition-metal-substituted analogues [WZn(TM)2(H2O)2(ZnW9O34)2]12- (Zn-WZn(TM)2; TM = MnII, CoII, FeIII, NiII and CuII) are reported. Various spectroscopic studies, including Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, electrospray ionization (ESI)-mass spectrometry, and Raman spectroscopy, show similar spectral patterns in all sandwich polyoxometalates (POMs) because of their isostructural geometry and constancy of the overall negative charge (-12). However, the electronic properties highly depend on the transition metals at the "sandwich core" and correlate well with the density functional theory (DFT) study. Further, depending on the substituted TM atoms, there is a decrease in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) band-gap energy in these transition-metal-substituted POM (TMSP) complexes wrt Zn-WZn3, as confirmed by diffuse reflectance spectroscopy and DFT study. Cyclic voltammetry reveals that the electrochemistry of these sandwich POMs (Zn-WZn3 and TMSPs) is highly dependent on the pH of the solution. Moreover, the dioxygen binding/activation studies of these polyoxometalates show that Zn-WZn3 and Zn-WZnFe2 have better efficiency toward dioxygen binding, as confirmed by FTIR spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA), which is also reflected in their catalytic activity toward imine synthesis.
Read full abstract