In pediatric radiology, balancing diagnostic accuracy with reduced radiation exposure is paramount due to the heightened vulnerability of younger patients to radiation. Technological advancements in computed tomography (CT) reconstruction techniques, especially model-based iterative reconstruction and deep learning image reconstruction, have enabled significant reductions in radiation doses without compromising image quality. Deep learning image reconstruction, powered by deep learning algorithms, has demonstrated superiority over traditional techniques like filtered back projection, providing enhanced image quality, especially in pediatric head and cardiac CT scans. Photon-counting detector CT has emerged as another groundbreaking technology, allowing for high-resolution images while substantially reducing radiation doses, proving highly beneficial for pediatric patients requiring frequent imaging. Furthermore, cloud-based dose tracking software focuses on monitoring radiation exposure, ensuring adherence to safety standards. However, the deployment of these technologies presents challenges, including the need for large datasets, computational demands, and potential data privacy issues. This article provides a comprehensive exploration of these technological advancements, their clinical implications, and the ongoing efforts to enhance pediatric radiology's safety and effectiveness.
Read full abstract