Abstract

High-speed, accessible, and robust in vivo imaging of the human retina is critical for screening of retinal pathologies, such as diabetic retinopathy, age-related macular degeneration, and others. Scanning light ophthalmoscopy (SLO) is a retinal imaging modality that produces digital, en face images of the human retina with superior image gradability rates when compared to the current standard of care in screening for these diseases, namely the flood-illumination handheld fundus camera (HFC). However, current-generation commercial SLO systems are mostly tabletop devices, limiting their accessibility and utility in screening applications. Moreover, most existing SLO systems use raster scan patterns, which are both inefficient and lead to undesired subject gaze drift when used with visible or pseudo-visible illumination. Non-raster scan patterns, especially spiral scanning as described herein, promise advantages in both scan efficiency and reduced subject eye motion. In this work, we introduce a novel "hybrid spiral" scan pattern and the associated hardware design and real-time image reconstruction techniques necessary for its implementation in an SLO system. Building upon this core hybrid spiral scanning SLO (HSS-SLO) technology, we go on to present a complete handheld HSS-SLO system, featuring a fiber-coupled portable patient interface which leverages a dual-clad fiber (DCF) to form a single-path optical topology, thus ensuring mechanically robust co-alignment of illumination and collection apertures, a necessity for a handheld system. The feasibility of HSS-SLO for handheld, in vivo imaging is demonstrated by imaging eight human volunteers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.